Practice Problem Set 6A

2-DOF: Free Undamped

Do the following problems from the book:
6.3. Determine the differential equations of motion of the double pendulum shown in the figure below in terms of the coordinates x_{1} and x_{2}. Identify the system mass and stiffness matrices.

6.7. Write down the differential equations of motion of the two degree of freedom system shown in the figure below. Identify the system mass and stiffness matrices. Obtain the characteristic equation and determine the system natural frequencies and amplitude ratios in the following special case:

$$
m_{1}=m_{2}, \quad a=b
$$

6.8. In Problem 6.7, if $m_{1}=m_{2}=0.5 \mathrm{~kg}, a=\mathrm{b}=0.25 \mathrm{~m}$, and $k=1000 \mathrm{~N} / \mathrm{m}$, determine the response of the system to the initial conditions

$$
\theta_{1}(0)=\theta_{2}(0)=\dot{\theta}_{1}(0)=0 \quad \text { and } \quad \dot{\theta}_{2}(0)=3 \mathrm{rad} / \mathrm{s}
$$

6.11. Determine the differential equations of motion of the 2-DOF system shown below. Identify the system mass and stiffness matrices. Obtain the characteristic equation and determine the natural frequencies of the system.

6.12. Determine the differential equations of motion of the 2-DOF system shown below. Identify the system mass and stiffness matrices. Obtain the characteristic equation and determine the natural frequencies ω_{1} and ω_{2}. Assume small oscillations for the two rigid bodies.

SCROLL

DOWN

FOR

SOLUTION

(But don't get tempted by the dark side. Resist! Use the, um, Force?)

ARE

 YOU

 YOU

 SURE?

 SURE?}
(Go back up and think harder? Also, what exactly are you looking for in the solution below?)

SOLUTION
6.3
(3)

$$
\left.\begin{array}{l}
\sum M_{A}=0 \\
m_{1} \ddot{x}_{1} l_{1}+m_{2} \ddot{x}_{2}\left(l_{1}+l_{2}\right)+m_{1} g x_{1}+m_{2} g x_{2}=0 \\
\sum M_{B}=0 \\
m_{2} \ddot{x}_{2} l_{2}+m_{2} g\left(x_{2}-x_{1}\right)=0 \\
{\left[\begin{array}{cc}
m_{1} l_{1} & m_{2}\left(l_{1}+l_{2}\right) \\
0 & m_{2} l_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left[\begin{array}{ll}
m_{1} g & m_{2} g \\
-m_{2} g & m_{2} g
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} \\
=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\text { or } \begin{array}{c}
m_{1} l_{1} \\
0
\end{array} m_{2} l_{1} \\
m_{2} l_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left[\begin{array}{ll}
\left(m_{1}+m_{2}\right) g & 0 \\
-m_{2} g & m_{2} g
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-\left[\begin{array}{cc}
m_{1} l_{1} & m_{2} l_{1} \\
0 & m_{2} l_{2}
\end{array}\right] .
$$

6.7

$$
\begin{aligned}
& \text { (7) } a+b=l \\
& m_{1} l^{2} \ddot{\theta}_{1}=-m_{1} g l \theta_{1}+k a^{2}\left(\theta_{2}-\theta_{1}\right) \\
& m_{2} l^{2} \ddot{\theta}_{2}=-m_{2} g l \theta_{2}-k a^{2}\left(\theta_{2}-\theta_{1}\right) \\
& \text { In matrix form } \\
& {\left[\begin{array}{cc}
m_{1} l^{2} & 0 \\
0 & m_{2} l^{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
m_{1} g l+k a^{2}-k a^{2} \\
-k a^{2} & m_{2} g l+k a^{2}
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]} \\
& =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { If } m_{1}=m_{2}=m, a=b=\frac{l}{2} \\
& \left|\underline{K}-\omega^{2} \underline{M}\right|=\left|\begin{array}{ccc}
m g l+k a^{2}-m l^{2} \omega^{2} & -k a^{2} \\
-k a^{2} & m g l+k a^{2}-m l^{2} \omega^{2}
\end{array}\right|=0 \\
& \Rightarrow \bar{a} \omega^{4}+\bar{b} \omega^{2}+\bar{c}=0 \\
& \text { where } \\
& \bar{a}=m l^{4} \\
& \bar{b}=-2 l^{3}\left(m g+\frac{1}{4} k l\right) \\
& \bar{c}=l^{2}\left(m g^{2}+\frac{1}{2} k g l\right) \\
& \omega_{1}^{2}=\frac{-\bar{b}+\sqrt{\bar{b}^{2}-4 \bar{a} \bar{c}}}{2 \bar{a}} \\
& \omega_{2}^{2}=\frac{-\bar{b}-\sqrt{\bar{b}^{2}-4 \bar{a} \bar{c}}}{2 \bar{a}} \\
& \beta_{1}=\frac{\theta_{11}}{\theta_{21}}=\frac{\frac{1}{4} k l^{2}}{m g l+\frac{1}{4} k l^{2}-\omega_{1}^{2} m l^{2}} \\
& =\frac{m g l+\frac{1}{4} k l^{2}-\omega_{1}^{2} m l^{2}}{\frac{1}{4} k l^{2}} \\
& \beta_{2}=\frac{\theta_{12}}{\theta_{22}}=\frac{\frac{1}{4} k l^{2}}{m g l+\frac{1}{4} k l^{2}-\omega_{2}^{2} m l^{2}} \\
& =\frac{m g l+\frac{1}{4} k l^{2}-\omega_{2}^{2} m l^{2}}{\frac{1}{4} k l^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8) } m_{1}=m_{2}=0.5 \mathrm{~kg}, a=b=0.25 \mathrm{~m} \\
& k=1000 \mathrm{~N} / \mathrm{m}, l=0.5 \mathrm{~m} \\
& \bar{a}=m l^{4}=0.03125 \\
& \bar{b}=-2 \ell^{3}\left(m g+\frac{1}{4} k l\right)=-32.475 \\
& \bar{c}=l^{2}\left(m g+\frac{1}{2} \mathrm{kgl}\right)=613.72 .5 \\
& \omega_{1}^{2}=1019.945, \quad \omega_{2}^{2}=19.255 \\
& \omega_{1}=31.94 \mathrm{rad} / \mathrm{s}, \omega_{2}=4.39 \mathrm{rad} / \mathrm{s} \\
& \beta_{1}=\frac{\theta_{11}}{\boldsymbol{\theta}_{21}}=\frac{k l^{2}}{4 m g l+k l^{2}-4 \omega_{1}^{2} m l^{2}}=-1 \\
& \beta_{2}=\frac{\theta_{12}}{\theta_{22}}=\frac{k l^{2}}{4 m g l+k l^{2}-4 \omega_{2}^{2} m l^{2}}=1 \\
& \text { I.C. } \\
& \begin{cases}\theta_{10}=0, & \dot{\theta}_{10}=0 \\
\theta_{20}=0, & \dot{\theta}_{20}=3\end{cases} \\
& 0=-\theta_{21} \sin \phi_{1}+\theta_{22} \sin \phi_{2} \\
& 0=\theta_{21} \sin \phi_{1}+\theta_{22} \sin \phi_{2} \\
& 0=-31.94 \theta_{21} \cos \phi_{1}+4.39 \cos \phi_{2} \\
& 3=31.94 \theta_{21} \cos \phi_{1}+4.39 \cos \phi_{2} \\
& \begin{cases}\theta_{21}=0.047, & \phi_{1}=0 \\
\theta_{22}=0.342, & \phi_{2}=0\end{cases} \\
& \therefore \theta_{1}(t)=-0.047 \sin (31.94 t) \\
& +0.342 \sin (4.39 t) \\
& \theta_{2}(t)=0.047 \sin (31.94 t) \\
& +0.342 \sin (4.39 t)
\end{aligned}
$$

Eq. of motion

$$
\begin{aligned}
\left(I+\frac{m l^{2}}{4}\right) \ddot{\theta} & =k l\left(x_{1}-l \theta\right) \\
m_{1} \ddot{x}_{1} & =-k\left(x_{1}-l \theta\right)
\end{aligned}
$$

In matrix form

$$
\left[\begin{array}{cc}
I+\frac{m l^{2}}{4} & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{c}
\ddot{\theta} \\
\ddot{x}
\end{array}\right]+\left[\begin{array}{cc}
k l^{2} & -k l \\
-k l & k
\end{array}\right]\left[\begin{array}{l}
\theta \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Characteristic Eq.

$$
\begin{aligned}
& \left|\underline{k}-\omega^{2} \underline{M}\right|=\left|\begin{array}{cc}
k l^{2}-\omega^{2}\left(I+\frac{m l^{2}}{4}\right) & -k l \\
-k l & k-\omega^{2} m_{1}
\end{array}\right|=0 \\
& \Rightarrow a \omega^{4}+b \omega^{2}+c=0
\end{aligned}
$$

where $a=\left(I+\frac{m l^{2}}{4}\right) m$,

$$
\begin{aligned}
& b=-\left[k\left(I+\frac{m l^{2}}{4}\right)+k l^{2} m,\right] \\
& c=0
\end{aligned}
$$

$$
\omega_{1}^{2}=0, \omega_{2}^{2}=-\frac{b}{a}
$$

(12) $\Sigma M_{A}=0$ $\begin{aligned} & I_{1} \ddot{\theta}_{1}+I_{2} \ddot{\theta}_{2}+m_{1} h_{1}^{2} \ddot{\theta}_{1}+m_{2}\left(l \ddot{\theta}_{1}+h_{2} \ddot{\theta}_{2}\left(l+h_{2}\right)\right. \\ & +m_{1} g h_{1} \theta_{1}+m_{2} g\left(l \theta_{1}+h_{2} \theta_{2}\right)=0 \\ & \Sigma M_{B}=0 \\ & I_{2} \ddot{\theta}_{2}+m_{2}\left(l \ddot{\theta}_{1}+h_{2} \ddot{\theta}_{2}\right) h_{2}+m_{2} g h_{2} \theta_{2}=0 \end{aligned}$ In matrix form $\begin{aligned} & {\left[\begin{array}{cc} I_{1}+m_{1} h_{1}^{2}+m_{2} l\left(l+h_{2}\right) & I_{2}+m_{2} h_{2}\left(l+h_{2}\right) \\ m_{2} l h_{2} & I_{2}+m_{2} h_{2}^{2} \end{array}\right]\left[\begin{array}{l} \ddot{\theta}_{1} \\ \theta_{2} \\ +\left[\begin{array}{cc} \left(m_{1} h_{1}+m_{2} l\right) g & m_{2} h_{2} g \\ 0 & m_{2} h_{2} g \end{array}\right]\left[\begin{array}{l} \theta_{1} \\ \theta_{2} \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] \end{array}\right]} \end{aligned}$ $\begin{aligned} & {\left[\begin{array}{cc} I_{1}+m_{1} R_{1}^{2}+m_{2} l^{2} & m_{2} l h \\ m_{2} l h & I+m_{2} h_{2}^{2} \end{array}\right]\left[\begin{array}{l} \ddot{\theta}_{1} \\ \ddot{\theta}_{2} \end{array}\right] } \\ + & {\left[\begin{array}{cc} \left(m_{1} h_{1}+m_{2} l\right) g & 0 \\ 0 & m_{2} h_{2} g \end{array}\right]\left[\begin{array}{l} \theta_{1} \\ \theta_{2} \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] } \end{aligned}$ Characteristic Eq. $\left\|\underline{k}-\omega^{2} \underline{M}\right\|=0 \Rightarrow a \omega^{4}+b \omega^{2}+c=0$ where $\text { ere } \begin{aligned} & a=\left(I_{1}+m_{1} h_{1}^{2}\right)\left(I_{2}+m_{2} h_{2}^{2}\right) \\ & b=-\left[m_{1} g h_{1}\left(I_{2}+m_{2} h_{2}^{2}\right)+\right. \\ &\left.m_{2} g h_{2}\left(I_{1}+m_{1} h_{1}^{2}\right)\right] \\ & c=0 \\ & \omega_{1}^{2}= 0 \Rightarrow \omega_{1}=0 \\ & \omega_{2}^{2}=-\frac{b}{a} \Rightarrow \omega_{2}=\sqrt{-\frac{b}{a}} \end{aligned}$	

