
Practice Problem Set 5C

Impulsive Forced Vibration

Description:

• A 1-kg bird flies into a 3-kg security camera. If the bird is flying at 72 km/hr when it strikes the camera, and if the length of the mounting bracket (*L*) is 0.55 m, find the maximum deflection of the bracket caused by the impact, in meters.

- It's up to you to assume any level of damping.
- Sketch an x vs t graph along with your final answer.

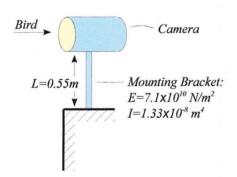
SCROLL

DOWN

FOR

SOLUTION

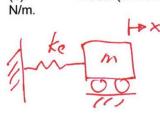
(But don't get tempted by the dark side. Resist! Use the, um, Force?)


ARE

YOU

SURE?

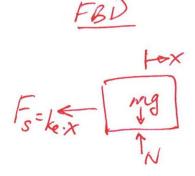
(Go back up and think harder? Also, what exactly are you looking for in the solution below?)


SOLUTION

State your assumptions.

No damping
Uniform mass (keam) - Beam wass negligible $E=7.1\times10^{10}~N/m^2$ $I=1.33\times10^8~m^4$ - Small deformation
- Frictienless
- Linear momentum is conserved between bird & camera

Model (and sketch) this as a spring-mass system, and calculate the equivalent stiffness (k_0) , in



(b).

bending:

$$k_{e} = \frac{3EI}{L^{3}} = \frac{3 \times 7.1 \times 10^{\circ} \times 1.33 \times 10^{-8}}{0.55^{3}}$$
 $= 17,070 \text{ m}$

Draw the free-body and inertia diagrams. Fully label and define all necessary variables. [Hint: A system initially at rest and subject to an impulsive force is equivalent to free vibration with $x_o=0$ and $\dot{x_o} = \frac{I}{m}$ where *I* is the impulse.]

(d). Derive the differential equation of motion.

(e). Calculate the bracket's maximum deflection (i.e., amplitude of vibration), in meters.

Sol=:
$$x = c$$
, $cos(wt) + c$ $sin(wt)$
 $\dot{x} = -c$, $\omega sin(wt) + c$ $\omega cos(wt)$

$$I(\zeta_s: \frac{\chi_s = \emptyset}{\chi(t=0)} = C_1 + 0 = 0 \Rightarrow \zeta_7 = 0$$

$$\frac{\dot{\chi}_0 = \frac{1}{m}}{\dot{\chi}(t=0)} = 0 + C_2 \cdot \omega = \frac{1}{m} \Rightarrow \zeta_2 = \frac{1}{m \cdot \omega}$$

$$\int I = \int F dt = (m \vee_0)_{bird} = 1 \text{ kg} \times 72 \frac{\text{km}}{\text{hr}} \cdot 1000 \frac{\text{m}}{\text{km}} \cdot \frac{1 \text{ hr}}{36005}$$

$$= 20 \text{ kg m/s}$$

$$W = \sqrt{\text{ke}} = \sqrt{\frac{17070}{3}} = 75.43 \text{ rad/s}$$

$$C_2 = \frac{20}{3 \times 75.43} = 0.088 \text{ m}$$

Response is
$$X(t) = 0.088 \sin(75.43 t)$$

where amplitude $(X) = [0.086 m]$ ans.